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Plummer [11] introduced the concept of a well-covered graph in
1970. A graph is well-covered if every maximal independent set (with
respect to set inclusion) in the graph is also a maximum independent
set. Various subclasses of well-covered graphs have been studied
(see, for example, [1] - [7], [10], and [12] - [14] ). We consider the
subclass which we call strongly well-covered graphs. A strongly
well-covered graph G is a well-covered graph with the additional
property that G-e¢ is also well-covered for every edge e in G. By
making use of (i) structural characteristics of strongly well-covered
graphs and (ii) the theory of Euler contributions (for planar graphs),
we show that there are only four planar strongly well-covered graphs.

From the definition, strongly well-covered graphs remain well-
covered upon deletion of any edge. Well-covered graphs which
remain well-covered upon deletion of any vertex (called 1-well-
covered) have previously been studied by several authors (see [10],
[13] and [14] ). It is interesting to note that a strongly well-covered
graph fails to remain well-covered if any vertex is deleted. The
following theorem is proved in [10].

Theorem 1. If G (G # K or K3) is strongly well-covered, then for
all vertices v in G the graph G-v is not well-covered .

Two structural characteristics which we need are stated in the
following two theorems. The proof of 3-connectedness proceeds by
induction on the independence number. See [9] or [10] for proofs.

Theorem 2. If G is strongly well-covered, Ge {K;,K3,Cs}, then &
24,

Theorem 3. Suppose G is strongly well-covered, Ge {K1,K2,C4}.
Then G is 3-connected.

Next we state a lemma which we will frequently use later. See

[9] or [10] for the proof.,
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Lemma 4. Suppose G is well-covered. Also suppose that S is an

independent set and x is a point in G such that (i) x¢ S and x ~ v for
exactly one vin S, and (ii) S dominates N[x], the closed
neighborhood of x. Then G-¢ is not well-covered, where e = vx.

Let G, be the subgraph of G obtained from G by deleting a vertex
v and all its neighbors. The next lemma states that if the vertex a is
isolated in the graph G,, then the vertices a and v must have the same
set of neighbors in G. The proof is by induction on the independence
number; see [9] or [10].

Lemma 5. Suppose G is connected and strongly well-covered and v
is a point in G such that G, has an isolated point a. Then Ng(a) =

Ng(v).

Planar ngly Well-covered Graphs.

For the remainder of this paper, we restrict ourselves to planar
strongly well-covered graphs. For graphs drawn in the plane, we say
two faces are adjacent if they share an edge. If a face F contains
vertex v, we say F is incident to v. The size of a face is the number of
vertices it contains. We refer to the order and sizes of the faces
incident to a vertex v as the face configuration at v.

In the next two lemmas, we consider points of degree four and
five, respectively, in planar strongly well-covered graphs.

Lemma 6. Suppose G is strongly well-covered planar and 3-

connected. If G has a point of degree four which is on a triangular
face, then G is the octahedron graph (see Figure 1).

Figure 1




Proof. Suppose v is a point of degree four in G and v is on a

triangular face. Let N(v) = {u;,u3,u3,u4). Note that § 2 4 by
Theorem 2.
Case 1. Suppose the face configuration at v is (3,3,3,3). Let
ujuyy, u2U3v usugv and ugquyVv be the faces.
~ u3, then {u;} dominates N[v]. By Lemma 4, the graph
G-vu 1s not well-covered This contradicts the assumption that G is

strongly well-covered. So y; is not adjacent to us.

Thus, there exists w_~ u) such that we {uy,u3,us,v}.

If w is not adjacent to u3, then {w,u3} dominates N[v], w is not
adjacent to v and u3 ~ v. This leads to a contradiction via Lemma 4.
Sow ~u3.

Let z~ up such that ze {ug,u3,uq,v}. If z # w, then {z,u4} is
independent and dominates N[v], z is not adjacent to v and us ~ v. By
Lemma 4, this is a contradiction. Thus z = w; that is, w ~ u; and
deg(up) = 4. Similarly, w ~ ug and deg(ug) = 4. It then follows that
deg(u;) = 4 = deg(us). Hence, G is the graph given in Figure 1.

Case 2. Suppose the face configuration at v is (3,3,3,n), n 2 4.
Assume the tnangular faces are uzu3v, usugv and ugu;v. Since G is
3-connected, then y

If uy ~ us, then ILU3} dominates N[v], a contradiction by Lemma
4. So u,_is not adjacent to u3.

Since deg(u;) 2 4, there ex1st points a and b adjacent to uy such

that {a,b} N {v,uz,u3,u4} =

If a is not adjacent to us, then (a,uz} is independent and
dominates N[v], a is not adjacent to v and u3 ~ v. By Lemma 4, we
have a contradiction. So a ~ u3 and, by symmetry, b ~ u3.

Since deg(uy) 2 4, there exists z ~ up such that z& {v,u3,b}.
Since G is planar, {z,u4) is independent. Then {z,u4} dominates
N[v], us ~ v and z is not adjacent to v, a contradiction by Lemma 4.

Thus, the face configuration (3,3,3,n), n 2 4, cannot occur.

Case 3. Suppose the cyclic face configuration is (3,3,m,n), m, n
2 4. Assume the triangular faces are uusv and uzugv. Since G is 3-

connected, then nm.um.adm:nug_uf and y; is not adjacent 1o ug.
If u) ~ us, then {u3} dominates N[v], a contradiction by Lemma
s not adjacent 1o u3.

4. Soyy
Thus, let N(uy) 2 {v,a,b,c}, where {a,b,c} N {uz,u3,us} =
If a is not adjacent to u3, then {a,u3} is independent and _Agcession For -
dominates N[v], a is not adjacent to v and u3 ~ v. We obtain a NTIS GRARI ©
contradiction via Lemma 4. So g ~ y3; by symmetry, b~ u3, ¢~ u3. orI2 TAB m|
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Without loss of generality, we can assume that b is on the
"outside" of cycle au;vugus and on the "outside" of cycle ujcuzuyv
(see Figure 2). Since deg(uz) 2 4, there exists t ~ up such that

te {v,c,u3}. Butthen {b,t,u4} is independent and dominates N[v], u,4
~ v and neither b nor t is adjacent to v. So by Lemma 4, we obtain a
contradiction.

Figure 2

Hence, the cyclic face configuration (3,3,m,n), m, n 2 4, cannot
occur.

Case 4. Suppose the cyclic face configuration at v is (3,m,3,n),
m, n 2 4, with triangular faces ujuyv and u3ugy. Since G is 3-

connected, then y) is not adjacent to us and yy is not adjacent to u3.

Case 4.1. Suppose u; ~ u3. If there exists x ~ ug (x& {v,us})
such that x is not adjacent to u,, then {x,u;} is independent and
dominates N[v], x is not adjacent to v and u; ~ v. By Lemma 4, we

have a contradiction. Thus, N(u;) 2 N(ug). Similarly, N(u3) 2
N(up). By Lemma 3§, it follows that N(uy) = N(uy) and N(u3) =
N(uz). Since u; ~ u3 and G is planar, then u; is not adjacent to ug.
But u3 ~ ug4, and so N(u3) # N(uj), a contradiction.

Hence, uy is not adjacent to u3. By symmetry, u; is not adjacent
10 us. Thus, t%xere exist points a and b such that g and b are neighbors
of y; and {a,b} N {v,uz,u3,u4} =

Case 4.2. Supposeca~u). Ifa is not adjacent to u3, then {a,us}
is independent and dominates N[v], a contradiction by Lemma 4. So
a ~ u3 and, similarly, a ~ u4. By Lemma 5, it follows that N(a) =
N(v), and so deg(a) = 4.




Since d 2 4 and G is planar, then {u;,us) is a cutset for G. Since
G is 3-connected, we have a contradiction.

Hence, a_l_s_n_o_;_ad_]m_uuz More generally, if x ~ uj, x # v,
then x is not adjacent to u;. By symmetry, if y ~ up, y # v, then y is
not adjacent to u;. Since deg(u;) 2 4 for all i, there exist neighbors ¢

and d of uj such that {c,d} N {v,u;} =D, and by the preceding
sentence we note that {a,b} N {c,d} =
Since G is planar, then x is not adjacent to y for some xe {a,b},

ye {c,d}. Without loss of generality, suppose b is not adjacentto c.

Case 4.3. Suppose ¢ ~ u3.

Case 4.3.1. If c ~ ug, then {c,u;} is independent and dominates
N[v], a contradiction by Lemma 4. So c is not adjacent to ug.

Case 4.3.2. If bis not adjacent to uy, then {b,c,us} is
independent and dominates N[v], a contradiction. So b ~ ug4.

Case 4.3.3. If b ~ u3, then {b,u;} dominates N[v], a
contradiction. Thus, b is not adjacent to us.

Case 4.3.4. Suppose ug ~ x for all xe N(u;)-uz. Then {up,uys)}
is independent and dominates N{u; ], a contradiction by Lemma 4. So
there exists x ~ uj, X # up, such that x is not adjacent to ug4.

If x is not adjacent to c, then {c,x,us) is independent and
dominates N[v], a contradiction. So x ~c.

Now by symmetry of the points u; and ug, there exists y ~ up, y
# uy, such that y is not adjacent to us. Since x ~ ¢, then {b,y,us} is
independent. Since {b,y,u3} dominates N{v], we arrive at a
contradiction via Lemma 4.

Thus, ¢ is not adjacent to u3 and, by symmetry, b is not adjacent

If C ~ ug, then {b,c,us3} is independent and dominates N[v], a

contradlcuon by Lemma 4. So Q_xs_nm_adjag;m_mm By symmetry,
. Thus, {b,c,u3} is independent and dominates
N{[v]. We obtain a contradlcuon from Lemma 4.

Hence, the cyclic face configuration (3,m,3,n), m, n 2 4, cannot
occur.

From Cases 1 through 4, we see that the only other possibility is
that v has exactly one triangle in its face configuration.

Case 5. Suppose v has face configuration (3,l,m,n), I, m, n 2 4,
with ujugv as the face triangle at v. Since G is 3-connected, u, is not

adjacent to us, u3 is not adjacent to us and y, is not adjacent 1o u;.
Suppose u; ~ u3. As in Case 4.1, we have N(u;) 2 N(us).
Then by Lemma 5, it follows that N(u;) = N(us). But u; ~u3 and uy4




is not adjacent to u3, a contradlcnon Thus, uj_is not adjacent to u3.
By symmerry,

Let w ~ u3, we {v,uj,uz,uq}. Suppose w ~ u4. If wis not
adjacent to u,, then {w,u; } is independent and dominates N[v], a
contradiction. So w ~ u; and, by symmetry, w ~ uz. Thus, N(w) =
N(v) by Lemma 5. Since & 2 4 by Theorem 2, then {u;,u4} is a
cutset for G, contradicting 3-connectedness.

Hence, w is not adjacent to u4 and so N(u3) N N(uq) = {v}.

Since G is planar and 8 2 4, then there exist points x and y such

that x ~ u3, y ~ u4 and X is not adjacent to y , where ve {x,y}.
Suppose y ~ uz. If y is not adjacent to uy, then {x,y,u;} is
independent and dominates N[v], a contradiction. Soy ~u;. But
then {y, U3} is independent and dominates N[v] a contradiction. Soy
2. By symmetry, 1-

If y is not adjacent to uy, then {x,y,u;} is mdcpendent and
dominates N[v], a contradiction. So y ~ u; and, by symmetry, X ~
uy.

Suppose ze N(uj)-u; implies z ~ u3. Then {u;,u3} dominates
N[u5], u; ~ uz and u3 is not adjacent to u;. By Lemma 4, we obtain a

contradiction. So there exists ze N(u;)-u; such that 2 is not adjacent
fo u3.
Let 3 and b be neighbors of u4 such that {a,b} N {v,y} =@

and let ¢ and d be neighbors of uj such that {c,d} N {v,x} =@

From above, we know that {a,b,y} N {c,d,x} =@ (see Figure 3).




Suppose a = z (that is, a ~ uz). Also suppose a ~ u;. Since

N(u3) N N(ug) = {v}, then {a,u3} is independent. Also, {a,us}
dominates N[v]. We obtain a contradiction via Lemma 4.

So a is not adjacent to u;. Suppose a ~ t for all te N(u3) - v.
Then {a,v} dominates Njus], a contradiction. So there exists some t
~ u3, t # v, such that t is not adjacent to a. Since G is planar, then
{a,t,u;} is independent. Since also {a,t,u;} dominates N[v], we
obtain a contradiction via Lemma 4.

Thus, a # z and, by symmetry, b # z.

Suppose there exists s€ {a,b} such that s ~ u;. Since G is
planar, then either s is not adjacent to z or y is not adjacent to z. Say s
is not adjacent to z. Then {s,z,u3} is independent and dominates
N[v], a contradiction. If y is not adjacent to z, then we obtain a
similar contradiction.

Thus, ;g_(.a.bl_lmm;ss_umm;.cnmm Likewise,

i

If y ~cory~d, then x is not ad]acent to a. Then {a,x,u;} is
independent and dominates N[v], a contradiction. So y jis adjacent {0
neither ¢ nor d. But then {c,y,u2} is independent and dominates
N{v], a contradiction by Lemma 4.

Therefore, the face configuration (3,1,m,n), I, m, n 2 4, is not
possible.

Hence if G has a point of degree four which is on a triangular
face, then G is the octahedron graph given in Figure 1. (]

Lemma 7. Suppose G is strongly well-covered planar and 3-
connected. Then G cannot have a point of degree five with face
configuration (3,3,3,3,n), n = 3, 4, or 5.

Proof. Suppose G has a point v with deg(v) = 5 and face
configuration (3,3,3,3,n), n =3,4 0or 5. Let N(v) =
{ul,ug,u3,u4,u5} Let U;= N(u;))-N{v], fori = 1, ..., 5. Since y; is
in a triangle for all i, then it follows from Lemma 6 that deg(u;) 2 5 for
all i.

Case 1. Suppose n = 3. Suppose u; ~ u3. If u) ~ ug, then {u;}
dominates N[v]. By Lemma 4, we obtain a contradiction. So u; is
not adjacent to ug.

Suppose there exists x ~ ug such that x is not adjacent to u;.
Then {x,u;} is independent and dominates N[v], u; ~ v and x is not
adjacent to v. By Lemma 4, we obtain a contradiction.




Thus, N(u;) 2 N(ug). It follows from Lemma 5 that N(u;) =
N(ug). Since u; ~ u3and G is planar, then u; is not adjacent to ug.
But u; ~ u; implies N(u;) # N(uy), a contradiction.

So y, is not adjacent to u3. By symmetry, y i j
ﬁ" Uz is not adjacent 1o us, up is not adjacent to 4, and 3 is not

Case 1.1. Suppose U3 Ug= . Letae U3 Uy Ifais not
adjacent to u;, then {a,u;} is independent and dominates N[v], a
contradiction. So a ~ uj.

Case 1.1.1. Suppose a ~ uy. If a is not adjacent to us, then
{a,us} is independent and dominates N[v}], a contradiction; so a ~ us.

Suppose xe U3 implies x ~ ug (that is, Uy 2 Us). Then {uj,us}
dominates N[u3], u; is not adjacent to uz and ug ~ u3. By Lemma 4,

we obtain a contradiction. Thus, there exists xe U3 such that x is not

adjacent to us. Similarly, there exists ye Uy such that y is not adjacent
to us.

If y is not adjacent to x, then {x,y,u; } is independent and
dominates N[v], a contradiction. Soy ~ x (see Figure 4). Since
deg(uy) 2 5, there exists t ~ uj such that te {u,,us,a,v}. In particular,
{t,x,us} is independent. Since {t,x,us} also dominates N[v], we
obtain a contradiction by Lemma 4.

Figure 4

Case 1.1.2. Thus, a is not adjacent to u;. By symmetry, a is not
adjacent to us. Suppose xe U, implies x ~a. Then {a,v} dominates
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N{uz], v ~ uz and a is not adjacent to u;. By Lemma 4, we obtain a
contradiction.

Thus, there exists xe U, such that x is not adjacent to a. But then
{a,x,us} is independent and dominates N[v], a contradiction.

Case 1.2. Hence, U3 Us=@. By symmeuy, U Uy =&,
for all i (addition mod 5). Since e G is planar and deg(u;) 2 5 for all i,

then there exist x ~ uy and y ~ u3 such that x is not adjacentto y.

Suppose x ~ uj. If x ~ z for all ze Us, then {x,v} is independent and
dominates N[us], v ~ us and x is not adjacent to us. By Lemma 4, we

obtain a contradiction. Thus, there exists ze Us such that x is not
adjacent to z. But then {x,z,u3} is independent and dominates N[v], a
contradiction.

So x is not adjacent to u). By symmetry, y is not adjacent to u
Thus, {x ,y,ul} is mdependent and dominates N[v], acontradlcuon

So n = 3 is not possible.

Case 2. Suppose n = 4. Let the 4-face at v be vusaus. If a is not
adjacent to uy, then {a,u;} is independent and dominates N[v], a
contradiction. So a ~ ujp.

Suppose a ~ u;. If a is not adjacent to u3, then {a,u3} is
independent and dominates N[v], a contradiction. So a ~ u3. Since

deg(u;) 2 5 for all i, there exist x ~ ug such that x& {(a,v,u3} and y ~
us such that ye {a,v,u;}. Then {x,y,uz} is independent and

dominates N[v], a contradiction. Thus, g is not adjacentto u;. By
symmetry, a is not adjacent {0 u3.

Suppose xe Us implies x ~a. Then {a,v} dominates N[u3], v ~
u3 and a is not adjacent to u3. By Lemma 4, we have a contradiction.

So there exists xe Us such that x is not adjacent to a. But then
{a,x,u;} is independent (since G is planar) and dominates N[v], a
contradiction.

Hence, n = 4 is not possible.

Case 3. Suppose n = 5. Let the 5-face at v be vusabus. Since G
is 3- connected then ug4 is not adjacent (o us. b is not adjacent to ug
and

Suppose u4 and us have a common neighbor w, w= v. If wis
not adjacent to uy, then {w,u,} is independent and dominates N[v], a

contradiction. So w ~ uy. Since deg(u3) 2 S, there exists xe U3 such
that x # w. Since G is planar, {a,x,u;) is independent. Thus,
{a,x,u;} is independent and dominates N|v|, a contradiction.

Hence, u4 and us don't have a common neighbor w. w #




Suppose u; ~ u3. If u; is not adjacent to a, then {a,u,} is
independent and dominates N{v], a contradiction. So u; ~a. But then
_{b,U3} is independent and dominates N[v], a contradiction. Thus, u;

Suppose a ~ u2: Then {b,u3) is independent. If b ~ u;, then
{b,u3} dominates N[v], a contradiction. So b is not adjacent to u;.

Suppose xe U; implies x ~b. Then {b,v} dominates N[u,], v
~u; and b is not adjacent to u;. By Lemma 4, we obtain a

contradiction. Thus, there exists xe U such that x is not adjacent to
b. But then {b,x,u3} is independent and dominates N[v], a
contradiction.

Hence, a is not adjacent to up; by symmetry, bi jacent (o

us.

Suppose u; ~ ug. If b is not adjacent to uy, then {b,u;} is
independent and dominates N[v], a contradiction. So b ~ uj;. Letz ~
u3 such that ze {uj,uq4,v}. Since G is planar, then {a,z,u;} is
independent. Since {a,z,u;} dominates N[v], we arrive at a
contradiction via Lemma 4.

So uy is not adjacent 10 ug; by symmetry, uz is not adjacent to us.

Suppose xe N(ug)-a implies x ~ uz. Then {a,uz} dominates
N[w4], a ~ ug and u; is not ddjacem to us. By Lemma 4, we obtain a
contradiction. So there exists x ~ u4, X # a, such that x 1§ not gﬂ]gcgn

to up. Similarly, there exists y ~ us, y # b, such that y is not adjacent
to up. From above, x #y. See Figure 5.

Figure 5

Suppose x ~y. Since G is planar, then either x is not adjacent to
b ory is not adjacent to a. Without loss of generality, assume x is not
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adjacent to b. Then {b,x,u;} is independent and dominates N[v], a
contradiction from Lemma 4.

Thus, x is not adjacentto y. Then {x,y,u2} is independent and
dominates N[v], a contradiction via Lemma 4.

Hence, n = 5 is not possible.

Thus, G cannot have a point v with deg(v) = 5 and face
configuration (3,3,3,3,n), n = 3,4 or 5. 0

Lebesgue [8] developed the theory of Euler contributions for
planar graphs. The Euler contribution of a vertex v, ¢(v), is defined

as the quantity ¢(v) = 1 - (1/2)deg(v) + Z(1/x;), where the sum is
taken over all faces F; incident to v and x; is the size of F;. If IF(G)I
denotes the number of faces in the plane graph G, then it follows that

, o(v) =IV(G) - [E(G)I + IF(G)I. Here the sum is taken over all
vertices v in G. Since Euler's formula for plane graphs says IV(G)! -

IE(G)I + IF(G)I = 2, then we have X, ¢(v) = 2. Thus, ¢(v) must be
positive for some v in G. From the definition of ¢(v), it follows

easily that ¢(v) < 0 whenever deg(v) 2 6. Thus, if ¢(v) >0, then
deg(v) <5.

As a consequence of the two previous lemmas and the theory of
Euler contributions, we find all 3-connected planar strongly well-
covered graphs in the following theorem.

Theorem 8. Suppose G is strongly well-covered planar and 3-
connected. Then G is the octahedron graph shown in Figure 1.

Proof. From Theorem 2, 8 2 4. Suppose v is a point in G with
positive Euler contribution; that is, ¢(v) >0. Then deg(v) =4 or5.

If deg(v) = 4, then ¢(v) = 1 - (1/2)(4) + Z(1/x;) = -1 + Z(1/xi),
where the sum is taken over all faces incident to v. For ¢(v) to be
positive, X(1/x;) must be greater than 1. Thus, v must lie on a
triangular face in order for ¢(v) to be positive. From Lemma 6, this
can only occur if G is the graph given in Figure 1.

If deg(v) = 5, then &(v) = 1 - (1/2)(5) + Z(1/x;) = -3/2 + Z(1/x;),
where the sum is taken over all faces incident to v. For ¢(v) to be
positive in this case, Z(1/x;) must be greater than 3/2. Thus, v must

11




have a face configuration of the form (3,3,3,3,n), n =3, 4 or 5. But
from Lemma 7, this cannot occur. 0]

From Theorem 3, we know that all strongly well-covered graphs
on more than four points are 3-connected. Thus, we conclude in the
following corollary that there are exactly four planar strongly well-
covered graphs.

Corollary 9. The only planar strongly well-covered grapt:.. are K;,
K3, C4 and the octahedron graph shown in Figure 1.
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